
Decrypting Encrypted Bluetooth data with FTS4BT

How Encryption Works in Bluetooth:
Bluetooth devices on an encrypted link share a common link key in order to exchange encrypted
data. How that link key is created depends upon the pairing method used.

Legacy Pairing (Bluetooth 2.0 and earlier)
In legacy pairing, this link key is derived from a shared PIN code, the master’s Bluetooth clock,
the master’s BD_ADDR and a random number that is passed between the two devices. The
sequence of events used to create this key, or pairing process, is shown in the FTS4BT Frame
Display below.

Frame 247 is the LMP_in_rand which is where a random number generated by the master is
passed to the slave. The slave acknowledges that it has accepted the number in frame 249.

In frames 250 and 251, the combination keys are passed between master and slave. In frame
252, the master sends its LMP_au_rand. This is the random number that has been encrypted
using the link key that master has calculated. The slave then responds with frame 253, an
LMP_sres confirming that it was able to compute the same number. That process is repeated in
the other direction (slave to master) in frames 254 and 255. Then the setup_complete message
is sent and they’re slave requests encryption mode in frame 257, and the master accepts in
frame 258. The actual encryption starts after the start encryption request in frame 261.

In order for FTS to decrypt an encrypted Bluetooth conversation, FTS must compute the same
link key being used by the devices being sniffed. Since this link key is never sent over the air, FTS
must have all of the same information the devices being sniffed have so that it can calculate the

same link key that each of the two devices does. To decrypt successfully, FTS must know the PIN
code and capture:

 The LMP_in_rand

 Both LMP_comb_keys

 Both LMP_au_rand/LMP_sres pairs.

If any of these are missed, FTS4BT will not be able to decrypt. If you capture encrypted data and
find that everything captured after the LMP_start_encryption_request is in error, look back at the
LMP frames previous to that and you’ll probably find one or more of these missing.

Creating a link key with Secure Simple Pairing (SSP)

To capture and decrypt data between two Bluetooth devices using Secure Simple Pairing you
have two choices. If one of your devices can be put into Secure Simple Pairing Debug Mode, all
that needs to be done in I/O Settings is to choose your master and slave. It doesn’t matter
what’s been selected in the Pairing Method drop down, FTS will see the debug messages being
captured and automatically use SSP debug mode.

The Private Key edit box should be left blank.

If neither of your devices can be put into debug mode, you’ll need to know the Private Key being
used by one of your devices. If that is the case, enter the Private Key into the box provided.

Once the link key has been created, decryption operates the same way it does in legacy pairing.

How to Capture and Decrypt Data with FTS4BT

1. Open FTS4BT “Air Sniffer (Basic) in the desktop folder.

This will bring up the FTS4BT Datasource. This is where parameters are set for sniffing,
including synchronization mode, and the devices to be sniffed.

Hardware Settings.
Select the Hardware Settings button.

Here the Bluetooth ComProbe may be selected and tested.

 Click Advanced.

 If you have previously captured the pairing of devices, a list of link keys that have been
previously calculated by FTS4BT will be displayed here. Two devices that have
previously paired will use the same link keys until they are paired again.

2. Open the I/O Parameter window on the FTS4BT Datasource.

How to setup the I/O Parameters.

 Make both of your devices discoverable.

 Press the “Discover Devices” button. FTS4BT will find any discoverable Bluetooth
devices within its range. You will then be able to select your devices from the master and
slave drop down lists. If one or both of your devices can’t be made discoverable, you
may type in the BD_ADDR(s) directly.

1. Select the synchronization mode that best suits your application. Clock synchronization
is how FTS4BT learns the clock that is being used on the piconet.

Standard (Slave Page)

This is how FTS learns the clock of a device that is NOT discoverable. For example, after
a phone and a headset have paired, often the headset will not be discoverable. If the
headset is a slave device and it is not discoverable, then FTS4BT will not be able to
synchronize to that device using Slave Inquiry mode. If we know the headset (slave) BD-
ADDR then by using Slave Page mode, FTS4BT will be able to page the device, (but will
never complete the connection during the page session). Once FTS4BT learns the clock
information during the paging process, FTS4BT will discontinue the paging process and
will now be synchronized to the undiscoverable slave’s clock.

Slave Page is highly recommended, especially when the link is encrypted. Slave Page
locks on to the master’s clock faster than Master Inquiry and so is less likely to miss any
of the encryption set up information FTS4BT needs to decrypt the subsequent data.

Alternate – Slave must be discoverable (Slave Inquiry)

FTS4BT will perform an inquiry of the slave and determine its clock. In this mode, the
slave must be discoverable.

4. Inform FTS4BT which device is going to be master and which device is going to be slave.
Note that it is necessary to select both a master and slave device if the link you are
sniffing is using encryption.

5. Enter Encryption PIN code. As mentioned above, FTS4BT needs the PIN code in order to
calculate the link key the two devices are using. Alternately, you may enter the Link Key
manually if it is known. FTS4BT also keeps a database of the link keys it’s previously calculated,
which may be accessed by clicking the “Choose Pair from Device Database button:

6. Select the Filter Out (eSCO/SCO, NULL, POLL) set up. These filters are low level hardware
filters. There are also Display Filters that you may use later to filter the captured data. Any data
filtered out here will not be captured at all. In most cases the default set up (filter out nulls and
polls, leave SCO data in) will be OK.

7. The OK button should now be available. If OK is grayed out, there is something set up
incorrectly in the I/O Parameter window. For example, if you selected PIN code in the Encryption
drop down but you neglected to fill in the PIN code, then OK will be grayed out.

8. Press OK, and then Start Sniffing. When you start sniffing, the Status Icon will go red (not yet
synchronized). After a short time (a few seconds) the icon will turn green and the status will
change to “Waiting to synchronize with clock source”. At this point FTS4BT is synchronized and
waiting for a baseband connection.

Note that there is a clock counting down from 30 seconds. When it reaches 5 seconds, the icon
will turn yellow, to warn you that at 0 it will resync. This is to avoid the ComProbe’s clock from
drifting to far in relation to the master’s clock. While it’s resyncing, FTS4BT will not be capturing
data, so make sure to connect your devices while the icon is green. It is recommended that
you click the Resync Now button just before you start the pairing process. This will ensure
that the clocks are closely synchronized.

When your connection is established, the Status Icon will turn blue, signifying that a baseband
link has been established and data should start to appear in the Frame Display.

How to tell if one of your devices is in Secure Simple Pairing Debug Mode

When a device is configured in SSP debug mode, FTS4BT will decode and display the debug key
in the Encapsulated Payload message. There will be an Encapsulated Payload message sent
from both the master and the slave. The message from the device that is in debug mode will
show the debug key, the other will show the public key. Remember, only one of the devices
needs to be in SSP debug mode.

Encapsulated Payload message from a device in SSP Debug Mode:

Encapsulated Payload message from a device NOT in SSP Debug Mode:

